1

Comparison of Scalar and Vector Quantities

TVO ILC

Type of Quantity	Examples	Symbol and Base Unit	Formula or Measurement
Scalar	time in seconds	t(s)	measurement
	elapsed time	Δt (s)	$\Delta t = t_2 - t_1$
	mass in kilograms	m (kg)	measurement
	distance in metres	d (m)	measurement
	speed in metres per second	ν (m/s)	$v_{avg} = \Delta d/\Delta t$
Vector	position in metres	\overrightarrow{d} (m)	measurement
	displacement in metres	$\overrightarrow{\Delta d}$ (m)	$\overrightarrow{\Delta d} = \overrightarrow{d}_2 - \overrightarrow{d}_1$
	velocity in metres per second	\vec{v} (m/s)	$\overrightarrow{v}_{avg} = \frac{\overrightarrow{\Delta d}}{\Delta t}$
	change in velocity	$\overrightarrow{\Delta v}$ (m/s)	$\overrightarrow{\Delta v} = \overrightarrow{v_2} - \overrightarrow{v_I}$
	acceleration in metres per second squared	\vec{a} (m/s ²)	$\vec{\alpha} = \frac{\overrightarrow{\Delta v}}{\Delta t}$
	force in Newtons	\overrightarrow{F} (N)	$\vec{F}_{net} = \overrightarrow{ma}$